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Abstract. A general solution of the model for positrons which diffuse inside a grain and then
can be trapped and detrapped at a grain boundary of arbitrary shape is presented. The closed-form
relations for the mean positron lifetime and the positron lifetime spectrum are obtained for a grain
of spherical shape. The obtained results slightly differ from those presented in 1996Phil. Mag.
73 1489 where a similar problem was considered and they extend the consideration given in that
paper inJ. Phys.: Condens. Matter10L547.

In the literature of recent years there can be found the exact solutions of the diffusion–transition
model for the trapping and annihilation of positrons in grain boundaries. These solutions are
important because they open new applications for the positron annihilation spectroscopy, e.g.,
for the study of fine grained samples. In the model which we will call the diffusion trapping
model (DTM) it is assumed that positrons randomly walk in a perfect grain where they can
also annihilate with the rateλf = 1/τf , whereτf is the positron lifetime in the free state.
The grain is surrounded by the boundary which act as a perfect sink for positrons where they
can also annihilate with the rateλb = 1/τb < λf . The transition rate from the free state to
the localized state at the boundary is described by theα parameter which value is equal to the
width of the boundary times the trapping rate. The general solution of this model even when
the grain boundary has an arbitrary shape was presented in [1], but in this paper we will add
in the model the detrapping process of positrons as well. Including the detrapping process
into the DTM seems to be important from two points of view. First, to obtain a more general
model to see new predicted phenomena. Second, the detrapping of positrons one could expect
from the low angle grain boundaries created by dislocations which act as the shallow positron
traps. The multilayer system could be also studied by positron annihilation techniques using
this model.

Let us assume that a positron which has been localized at the boundary can escape with
the rateβ to the free state in the grain interior and start to diffuse again. We denote the number
of trapped positrons asnb and their local concentration in the grain interior asC(r, t). Both
functions fulfil the following set of equations:

∂

∂t
C(r, t) = D+∇2C(r, t)− λfC(r, t) + βnb(t)T (r)

d

dt
nb(t) = α

∫∫
⊂⊃

6

dS C(r, t)− (λb + β)nb(t)

D+

∫∫
⊂⊃

6

dS · ∇C(r, t) + α
∫∫
⊂⊃

6

dS C(r, t) = 0

(1)
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where6 is the grain surface,D+ is the diffusion coefficient of positrons andT (r) dV is the
probability that the positron which escapes from the boundary will be localized in the element
dV at the place of which the coordinate is equal tor. The positrons which have returned to the
interior of a grain take part in the diffusion process again as noted in the last term of the time
dependent diffusion equation of the set (1). The second equation is the kinetic equation for
the number of positrons trapped at boundary and the third one exhibits the fact that only the
positrons which pass through the boundary are able to be localized there. The presented set of
equations differs from that which was taken into consideration in [2] where the same model
was examined. However, in this paper the detrapping process was not taken in the adequate
way by modification of the second and third equations in (1) only. We argue that detrapped
positrons modify in some way the concentration of positrons in the grain interior what should
be reflected in the time dependent diffusion equation.

We should note that the explicit formula of the functionT (r) is not important because
in our calculations we will search only the total number of positrons at the grain boundary
and in the interior. During calculations we assume that this function fulfils the condition:∫∫∫⊂⊃

�
dV T (r) = 1, where� is the volume of the grain, which means that the positron after

escaping from the boundary appears in the free state somewhere in the interior with probability
equal to unity. Certainly the exact solution of (1) depends on theT (r) function but in the
experiment we are able to detect only the total number of positrons which annihilate in the two
states.
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Figure 1. The mean positron lifetime (17) (solid lines), normalized toτf , versusR/L+ calculated
from the DTM for a spherical shape grain. The calculations were performed for four values of the
βτb parameter: 0, 0.1, 1 and 10. The parameter ofατf /L+ was equal to 1. For comparison the
dashed lines present the same calculation but using the relation which was found by the authors
of [2].

Thus for solution of the DTM we have to find the time dependent total number of positrons
which is described as a sum:

n(t) = nb(t) +
∫∫∫
⊂ ⊃

�

dV C(r, t). (2)

From this the average positron lifetime,τ̄ = ∫∞
0 dt n(t) or the positron lifetime spectrum,

−dn(t)/dt can be evaluated. Because in [1] the solution procedure of the equations (1), with
β = 0, was presented in detail now we will present only by the final results. The key function
in the solution is the function which is defined as follows:

F̃ (r, s) = (λf + s)V�C̃(r, s) (3)
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whereC̃(r, s) = ∫∞0 dt e−stC(r, t) is the Laplace transform of the function which describes
the local concentration of the positrons. The function (3) fulfils the following equation:

∇2F̃ (r, s)− γ (s)2F̃ (r, s) = −γ (s)2 (4)

whereγ (s) = √[(λf + s)/D+](λb + β + s)/(λb + s). The Laplace transform of the function
which describes the change of the total number of positrons can be deduced from (1), (2) and
(3) as follows:

ñ(s) = 1

λb + s

[
1− λf − λb

λf + s

1

V�

∫∫∫
⊂ ⊃

�

dV F̃ (r, s)

]
. (5)

The mean positron lifetime is described by:

τ̄ = 1

λf
+

(
1

λb
− 1

λf

)[
1− 1

V�

∫∫∫
⊂ ⊃

�

dV F̃ (r, 0)

]
. (6)

The positron lifetime spectrum after inverting the Laplace transform of (5) and then taking the
time derivative is expressed as:

−dn(t)

dt
= res

s=−λb

(
λb

λb + s

[
1− λf − λb

λf + s

1

V�

∫∫∫
⊂ ⊃

�

dV F̃ (r, s)

]
e−λbt

)
+
∞∑
i=0

res
s=−λi

λi

λb + s

[
1− λf − λb

λf + s

1

V�

∫∫∫
⊂ ⊃

�

dV F̃ (r, s)

]
e−λi t . (7)

The solution of equation (4) one can express as follows:

F̃ (r, s) = A(s)f̃ (r, s) + g̃(r, s) (8)

where:

∇2f̃ (r, s)− γ 2f̃ (r, s) = 0. (9)

The functionA(s) we can evaluate from the third equation of the set (1):

A(s) = − (λf + s)(λb + β + s)
∫∫∫⊂⊃

�
dV [g̃(r, s)− 1] + α(λb + s)

∫∫⊂⊃
6

dS g̃(r, s)

(λf + s)(λb + β + s)
∫∫∫⊂⊃

�
dV f̃ (r, s) + α(λb + s)

∫∫⊂⊃
6

dS f̃ (r, s)
. (10)

In our consideration important role play only the following expression:

1− 1

V�

∫∫∫
⊂ ⊃

�

dV F̃ (r, s)

= 1

1 + (λf +s)
α

(λb+β+s)
(λb+s)

B(γ )

[
1−

(
1− B(γ )

D(γ )

)
1

V�

∫∫∫
⊂ ⊃

�

dV g̃(r, s)

]
(11)

where

B(γ ) =
∫∫∫⊂⊃

�
dV f̃ (r, s)∫∫⊂⊃

6
dS f̃ (r, s)

(12)

and

D(γ ) =
∫∫∫⊂⊃

�
dV g̃(r, s)∫∫⊂⊃

6
dSg̃(r, s)

(13)

and

γ ≡ γ (s). (14)
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If we know theB(γ ) function then we could evaluate the value ofλi as follows. First we have
to solve the transcendental equation:

ξ2
i B(ξi) +

α

D+
= 0 (15)

and then the second order equation:

λ2
i + λi [D+ξ

2
i − (λb + λf + β)] + λf (λb + β)−D+ξ

2
i λb = 0. (16)

The presented above equations are valid for a grain of arbitrary shape. Let us assume that the
grain is a sphere of radiusR. The functionsB(γ )andD(γ ) can be written in an analytical form:
B(γ ) = (1/γ )L(γR), whereL(z) = coth(z) − 1/z is the Langevin function,D(γ ) = R/3
andg̃(r, s) = 1, [1]. From (6) and (11) we can obtain the value of the mean positron lifetime:

τ̄ = τf +
3L+(τb − τf )
R
√

1 + τbβ

L(R
√

1 + τbβ/L+)

1 + (L+
√

1 + τbβ/ατf )L(R
√

1 + τbβ/L+)
(17)

whereL+ =
√
D+τf is the diffusion length of positrons inside the grain. For calculation of

the positron lifetime spectrum in such a case we should notice that the first term in (7) is equal
to zero. After some algebra the final relation for the positron lifetime spectrum is given by:

−dn(t)

dt
= 6(τb − τf )

∞∑
i=1

{e−t/τi }{τi [τb − τf + (1− τf /τi)2(R2/L2
+)τb/ξ

2
i ]

×[1− L2
+/ατfR + (L2

+/ατfR)
2ξ2
i ]ξ2

i }−1. (18)

ξi fulfils the transcendental equation:

ξi coth(ξi) +
ατfR

L2
+

= 1 (19)

andτi can be calculated from the solution of the equation

τf τb

(
1

τi

)2

−
(

1

τi

)(
τb + τf + βτbτf + ξ2

i

L2
+

R2
τb

)
+ (1 +βτb) + ξ2

i

L2
+

R2
= 0. (20)

Note that for one value of theξi parameter evaluated from (19) we have two values ofτi from
(20). Let us assume that the detrapping rateβ is small enough that it fulfils the following
relation:

β � R2

4τf τ 2
b L

2
+ξ

2
i

(τb − τf − βτbτf + ξ2
i τbL

2
+/R

2)2 (21)

thus the solutions of (20) have the approximated forms:

1

τi,1
= 1

τf

(
1 + ξ2

i

L2
+

R2

)
+ εi (22)

and
1

τi,2
= 1

τb
+ β − εi (23)

whereεi = 2(ξ2
i βτbL

2
+/R

2)/(τb − τf − βτf τb + ξ2
i L

2
+τb/R

2). Note that if we neglect the
detrapping the relations (22) and (23) will reduce to the relations which were presented in [3].
The new feature of the obtained result is that the positron lifetime contains an infinite number
of lifetime components of which the values are less than theτf value (22) and additionally an
infinite number of lifetime components of which the values are less than theτb value (23).

In comparison to the results obtained in [2] we should mark two important differences:
first, in our expression for the mean positron lifetime (17) the value ofL+ is divided by the
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factor
√

1 + τbβ, second, we can find a difference in the transcendental equation (19). Both
arise from the more complex relation for theγ (s) function which we have obtained than that
in [2] (relation (5)).

Figure 1 presents an example of the mean positron lifetime as a function of theR/L+ ratio
for a few values of theβτb parameter (0, 0.1, 1 and 10). We can see that increase of the value
of this parameter causes a faster decrease of the mean positron lifetime towards theτf value.
This is easily understood, because an increase of the detrapping rate indicates more positrons
in the interior of the grain where the positron lifetime is equal toτf . In this figure we have
drawn for comparison also the results predicted by the authors of [2] for two values of theβτb
parameter (1 and 10) marked by the dashed lines. We can see that differences between the
mean positron lifetime predicted by the two approaches are not large and they disappear when
R/L+ tends to zero.

In conclusion, it may be stated that the detrapping process of positrons from the boundary
to the grain modifies in a relevant way the positron annihilation characteristics. When the
grain has a spherical shape the detrapping process reduces the diffusion length parameter in
the relation for the mean positron lifetime and adds an additional infinite sum of lifetime
components in the relation for the positron annihilation spectrum.
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